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Divide and 
conquer

Transforms

Brute force Dynamic 
programming

Iteration Whatever

Greedy

…

Algorithm A 
for problem P

Algorithm B 
for problem P

Algorithm C 
for problem P

Algorithm D 
for problem P

Algorithm E 
for problem P

Algorithm F 
for problem P

Algorithm G 
for problem P

Perfect talk



Bad news

• Not comprehensive

• Not optimal

• Not standard



Even worse news

• Exercises during the talk



Brute Force
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A Hamiltonian path
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Time O(n!). Polynomial space.

n! permutations of 1,2,…,n

Don’t need them all

Time O((n-1)!)

Polynomial computation 
for each permutation

Time O(n!n)

Construct all 
permutations with 

constant delay?

Time O*(n!)
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Independent set

G = (V, E)

max
|⊆V

{ |I| : u, v ∈ I → uv /∈ E }
Time O*(2n). Polyspace.
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Count them (finding one is “easy”)

Time O*(2m). Polyspace. Time O*(n!). Polyspace.



Exercise: Graph colouring

A five-colouring
No edge connects vertices of the same colour
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Exercise: Graph colouring
Input: Graph G=(V,E), integer k
Ouput: Can G be coloured with k colours?

Time O*(nk)

Solve using brute force



Greedy
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Exercise: Graph colouring

Is every k-colourable 
graph greedily k-
colourable (for some 
ordering)?

Conclude: Graph 
colouring in O(n!)
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Recursion
(“Reduce to self”)

Divide and conquerDecrease and conquer

an = a · an−1 an = an/2 · an/2

Insertion sort Mergesort
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✘

✘
✘
✘

New instance of 
size n-1

Instance of size n

New instance of 
size n-4

T(n) = T(n − 1) + T(n − 4)

Time O*(1.39n). Polyspace.
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(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

Time O*(1.84n). Polyspace.
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TSP

T(n) = n · T(n − 1)
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Exercise: Graph colouring

Better: split on “nonedges”



Exercise: Graph colouring

Better: split on “nonedges”

Conclude: Graph colouring in O(1.619n+m’)
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n-1

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)
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TSP

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

T(n) =

(
n

n/2

)
· 2 · T(n/2)

T(n) ≤ 2n · T(n/2) ≤ 2n2n/2 · · · 20 ≤ 22n = 4n
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Exercise: Graph colouring

k-colouring =  
partition into k 
independent sets

Conclude: Graph 
colouring in 
O*(9n)
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Transformation
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log an = n log a

a(0110101)2 = . . .

Moebius transformCounting triangles
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Counting triangles

Easily in O(|V|3)
Surprise: can do better! 

Current record: O(|V|2.376)
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Count the 
number of 
2-colourings



Moebius inversion

Pedestrian view: inclusion–exclusion
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Moebius inversion

Pedestrian view: inclusion–exclusion

Algebraic view: transformation on the subset lattice



• Brute force

• Greedy

• Divide and whatever

• Transformation

• Iterative improvement 
(flow, simplex, local search)

• Time–space tradeoffs 
(dynamic programming)

today

tomorrow
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Exercise: Graph colouring
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Exercise: Graph colouring
Count the k- 
colourings in 
time O*(3n)
Hint: g(X)= # ways to pick 

k independent sets 
(not necessarily disjoint) 
using some of the vertices 

in X

If you use Yates, 
time becomes 
O*(2n)



Perfect matchings in 
general graphs
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f(Y) f(X) =
∑

Y⊆X
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using all vertices in X
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g(X) =
∑

Y⊆X

f(Y) f(X) =
∑

Y⊆X

(−1)|X\Y|g(Y)If then

f(X) = # ways to pick n/2 edges 
using all vertices in X

g(X) = # ways to pick n/2 edges 
using some vertices in X

Time O*(2n). Polyspace.



g(X) = # ways to pick n/2 edges 
using some vertices in X

f(V) =
∑

X⊆V

(−1)|V\X|g(X)

If G[X] has k edges then g(X) = ?
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Gist: computing

f(V) =
∑

X⊆V

(−1)|V\X|g(X)

amounts to computing the number of
induced subgraphs on r vertices with k edges
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Counting triangles

V

r/3 vertices and k/6 edges

k/6 edges

Triangles 
correspond to 
subgraphs with 
r vertices and 

k edges



Counting triangles

V

r/3 vertices and k/6 edges

k/6 edges

Triangles 
correspond to 
subgraphs with 
r vertices and 

k edges

Time O(2 ωn/3)



Counting triangles

V

r1 vertices and k1 edges

k12 edges

For each r1+r2+r3=r, 
k1+k2+k3+k12+k13+k23=k



Iterative improvement
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Variables Clauses
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Pr(from i to 0) = 2-i



3-Satisfiability

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

1 1 1 1 0 0 1 0 0 1

Variables Clauses

1
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3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

Repeat 3n times
Pick a random assignment

Repeat a bunch of  times

Pr(from i to 0) = 2-i



3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

Repeat 3n times
Pick a random assignment

Repeat a bunch of  times

Pr(from i to 0) = 2-i

Pr(random assignment has distance i) =
(

n

i

)
2−n



3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

Repeat 3n times
Pick a random assignment

Repeat a bunch of  times

Pr(from i to 0) = 2-i

Pr(random assignment has distance i) =
(

n

i

)
2−n

n∑

i=0

(
n

i

)
2−n2−i = · · · = (

3

4
)nPr(success)=



Exercise: Graph colouring

See the Perfect Talk



Time–Space Tradeoffs



Time–Space Tradeoffs
Meet in the middleDynamic programming

over the subsets over a tree-
decomposition



Meet in the middle



TSP, degree 4

n-1

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)
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n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

T m OPT(T,m,t)
... ... ...

{v4,v16,….} v63 43673

... ... ...

1. Compute all 
OPT(T,m,t), store them

2. Compute all 
OPT(S,m,s), look up 

corresponding 
OPT(V-S,m,t)

Time O(3n/2)

Space O(3n/2)



Exercise: Graph colouring

See the Perfect Talk



Dynamic programming 
over the subsets



TSP

n-1

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)
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Exercise: Graph colouring
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colourings in 
time O*(3n)
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n-1

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)
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takes n time.

Time O*(2n)



Part of popular geek culture

[xkcd #399]
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