
Introduction to
Exact Algorithmics

Thore Husfeldt
IT University of Copenhagen

Lund University

Algorithm A
for problem P

Algorithm B

for problem Q

Algorithm C
for problem R

Algorithm D

for problem S

Algorithm F for problem U

Algorithm G

for problem V

Algorithm H

for problem W

Algorithm I for problem X

Algorithm J for problem Y

Algorithm K
for problem Z

Algorithm E’

for problem T

Algorithm L for problem T

Algo
rith

m E

for p
roble

m T

Algorithm A
for problem P

Algorithm B

for problem Q

Algorithm C
for problem R

Algorithm D

for problem S

Algorithm F for problem U

Algorithm G

for problem V

Algorithm H

for problem W

Algorithm I for problem X

Algorithm J for problem Y

Algorithm K
for problem Z

Algorithm E’

for problem T

Algorithm L for problem T

Algo
rith

m E

for p
roble

m T

Algorithm A
for problem P

Algorithm B

for problem Q

Algorithm C
for problem R

Algorithm D

for problem S

Algorithm F for problem U

Algorithm G

for problem V

Algorithm H

for problem W

Algorithm I for problem X

Algorithm J for problem Y

Algorithm K
for problem Z

Algorithm E’

for problem T

Algorithm L for problem T

Algo
rith

m E

for p
roble

m T

Algorithm A
for problem P

Algorithm B

for problem Q

Algorithm C
for problem R

Algorithm D

for problem S

Algorithm F for problem U

Algorithm G

for problem V

Algorithm H

for problem W

Algorithm I for problem X

Algorithm J for problem Y

Algorithm K
for problem Z

Algorithm E’

for problem T

Algorithm L for problem T

Algo
rith

m E

for p
roble

m T

Class 1 Class II Class III

Algorithm A
for problem P

Algorithm B

for problem Q

Algorithm C
for problem R

Algorithm D

for problem S

Algorithm F for problem U

Algorithm G

for problem V

Algorithm H

for problem W

Algorithm I for problem X

Algorithm J for problem Y

Algorithm K
for problem Z

Algorithm E’

for problem T

Algorithm L for problem T

Algo
rith

m E

for p
roble

m T

Class 1 Class II Class III

Algorithm A
for problem P

Algorithm B

for problem Q
Algorithm H

for problem W

Algorithm I for problem X

Algorithm J for problem Y

Algo
rith

m E

for p
roble

m T

Divide and
conquer

Transforms

Brute force Dynamic
programming

Iteration Whatever

Greedy

…

Algorithm A
for problem P

Algorithm B
for problem P

Algorithm C
for problem P

Algorithm D
for problem P

Algorithm E
for problem P

Algorithm F
for problem P

Algorithm G
for problem P

Perfect talk

Bad news

• Not comprehensive

• Not optimal

• Not standard

Even worse news

• Exercises during the talk

Brute Force

Travelling Salesman

Travelling Salesman

A Hamiltonian path

Travelling Salesman

Travelling Salesman

4
9

3

1
2

4
2

5

6 7

8

5

Travelling Salesman

4
9

3

1
2

4
2

5

6 7

8

5

Travelling Salesman
4

9

3

1

2

4

2

5

6 7

8

5

G = (V, E)

w : E → N

min
π

n−1∑

i=1

w(π(i), π(i + 1))

Travelling Salesman
4

9

3

1

2

4

2

5

6 7

8

5

G = (V, E)

w : E → N

min
π

n−1∑

i=1

w(π(i), π(i + 1))

Time O(n!). Polynomial space.

Time O(n!). Polynomial space.

n! permutations of 1,2,…,n

Time O(n!). Polynomial space.

n! permutations of 1,2,…,n

Time O(n!). Polynomial space.

n! permutations of 1,2,…,n

Don’t need them all

Time O((n-1)!)

Time O(n!). Polynomial space.

n! permutations of 1,2,…,n

Don’t need them all

Time O((n-1)!)

Polynomial computation
for each permutation

Time O(n!n)

Time O(n!). Polynomial space.

n! permutations of 1,2,…,n

Don’t need them all

Time O((n-1)!)

Polynomial computation
for each permutation

Time O(n!n)

Construct all
permutations with

constant delay?

Time O*(n!)

Independent set

Independent set

Independent set

Independent set

Independent set

G = (V, E)

max
|⊆V

{ |I| : u, v ∈ I → uv /∈ E }

Independent set

G = (V, E)

max
|⊆V

{ |I| : u, v ∈ I → uv /∈ E }
Time O*(2n). Polyspace.

3-Satisfiability

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

n variables
m clauses

3-Satisfiability

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

n variables
m clauses

Time O*(2n). Polyspace.

Perfect matchings

Perfect matchings

Perfect matchings

Perfect matchings

Perfect matchings
Count them (finding one is “easy”)

Perfect matchings
Count them (finding one is “easy”)

Time O*(2m). Polyspace.

Perfect matchings
Count them (finding one is “easy”)

Time O*(2m). Polyspace. Time O*(n!). Polyspace.

Exercise: Graph colouring

A five-colouring
No edge connects vertices of the same colour

Exercise: Graph colouring
Input: Graph G=(V,E), integer k
Ouput: Can G be coloured with k colours?

Solve using brute force

Exercise: Graph colouring
Input: Graph G=(V,E), integer k
Ouput: Can G be coloured with k colours?

Time O*(nk)

Solve using brute force

Greedy

Exercise: Graph colouring

Does this always work?

Exercise: Graph colouring

Does this always work?

Exercise: Graph colouring

Does this always work?

Exercise: Graph colouring

Does this always work?

Exercise: Graph colouring

Does this always work?

Exercise: Graph colouring

Does this always work?

Exercise: Graph colouring

Does this always work?

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Is every k-colourable
graph greedily k-
colourable (for some
ordering)?

Conclude: Graph
colouring in O(n!)

Recursion
(“Reduce to self”)

Recursion
(“Reduce to self”)

Recursion
(“Reduce to self”)

Divide and conquerDecrease and conquer

Recursion
(“Reduce to self”)

Divide and conquerDecrease and conquer

Insertion sort Mergesort

Recursion
(“Reduce to self”)

Divide and conquerDecrease and conquer

an = a · an−1 an = an/2 · an/2

Insertion sort Mergesort

Decrease and conquer

Independent set

Degree ≤ 2: easy

Independent set

Instance of size n

Degree ≤ 2: easy

Independent set

✘

Two new instances
of size n-1

Instance of size n

Degree ≤ 2: easy

Independent set

✘

Instance of size n

Independent set

✘

✘
✘
✘Instance of size n

Independent set

✘

✘
✘
✘

New instance of
size n-1

Instance of size n

New instance of
size n-4

Independent set

✘

✘
✘
✘

New instance of
size n-1

Instance of size n

New instance of
size n-4

T(n) = T(n − 1) + T(n − 4)

Independent set

✘

✘
✘
✘

New instance of
size n-1

Instance of size n

New instance of
size n-4

T(n) = T(n − 1) + T(n − 4)

Time O*(1.39n). Polyspace.

3-Satisfiability

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

3-Satisfiability

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

3-Satisfiability

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

T F F

T F

T

3-Satisfiability

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

T F F

T F

T

T(n) = T(n − 1) + T(n − 2) + T(n − 3)

3-Satisfiability

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

Time O*(1.84n). Polyspace.

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

T F F

T F

T

T(n) = T(n − 1) + T(n − 2) + T(n − 3)

TSP

TSP

TSP

TSP

TSP

TSP

TSP

T(n) = n · T(n − 1)

Exercise: Graph colouring

First approach:
split on vertices

Exercise: Graph colouring

First approach:
split on vertices

Exercise: Graph colouring

First approach:
split on vertices

Exercise: Graph colouring

First approach:
split on vertices

Exercise: Graph colouring

Better: split on “nonedges”

Exercise: Graph colouring

Better: split on “nonedges”

Conclude: Graph colouring in O(1.619n+m’)

Divide and conquer

TSP

n-1

TSP

n-1

n/2 n/2

TSP

n-1

n/2 n/2

TSP

n-1

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)

TSP

T(n) =

(
n

n/2

)
· 2 · T(n/2)

TSP

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

T(n) =

(
n

n/2

)
· 2 · T(n/2)

TSP

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

T(n) =

(
n

n/2

)
· 2 · T(n/2)

T(n) ≤ 2n · T(n/2) ≤ 2n2n/2 · · · 20 ≤ 22n = 4n

Exercise: Graph colouring

k-colouring =
partition into k
independent sets

Exercise: Graph colouring

k-colouring =
partition into k
independent sets

Conclude: Graph
colouring in
O*(9n)

Transformation
(“Reduce to other”)

log an = n log a

a(0110101)2 = . . .

Transformation
(“Reduce to other”)

log an = n log a

a(0110101)2 = . . .

Moebius transformCounting triangles

To Counting Triangles

To Counting Triangles

To Counting Triangles

To Counting Triangles

To Counting Triangles

To Counting Triangles

To Counting Triangles

To Counting Triangles

To Counting Triangles

Counting triangles

Easily in O(|V|3)
Surprise: can do better!

Current record: O(|V|2.376)

1

2

3 4

trace(A3) = 6 times # triangles

1

2

3 4

A

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

trace(A3) = 6 times # triangles

1

2

3 4

A

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

A2

2 1 1 1
1 2 1 1
1 1 2 0
1 1 0 1

trace(A3) = 6 times # triangles

1

2

3 4

A

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

A2

2 1 1 1
1 2 1 1
1 1 2 0
1 1 0 1

A3

2 3 3 1
3 2 3 1
4 4 2 3
1 1 2 0

trace(A3) = 6 times # triangles

1

2

3 4

A

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

A2

2 1 1 1
1 2 1 1
1 1 2 0
1 1 0 1

A3

2 3 3 1
3 2 3 1
4 4 2 3
1 1 2 0

trace(A3) = 6 times # triangles

1

2

3 4

A

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

A2

2 1 1 1
1 2 1 1
1 1 2 0
1 1 0 1

A3

2 3 3 1
3 2 3 1
4 4 2 3
1 1 2 0

trace(A3) = 6 times # triangles

Time O(d3)

1

2

3 4

A

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

A2

2 1 1 1
1 2 1 1
1 1 2 0
1 1 0 1

A3

2 3 3 1
3 2 3 1
4 4 2 3
1 1 2 0

trace(A3) = 6 times # triangles

Time O(d3)Time O(dω)

2

4

3

1

5

6

8

a

9

7

b

independent set of size k=6?

2

4

3

1

5

6

8

a

9

7

b
12

13

14

15

16

19

1a

1b

23

24

25 26

27

29

2b

34

35

36

37

3a

3b

45 46

48

4b

56 57

5b

67

68

7a

9b

vertex for every independent subset of size k/3
(

n

k/3

)
∼ nk/3

2

4

3

1

5

6

8

a

9

7

b
12

13

14

15

16

19

1a

1b

23

24

25 26

27

29

2b

34

35

36

37

3a

3b

45 46

48

4b

56 57

5b

67

68

7a

9b

edge for every disjoint, independent subset
= independent subset of size 2k/3

2

4

3

1

5

6

8

a

9

7

b
12

13

14

15

16

19

1a

1b

23

24

25 26

27

29

2b

34

35

36

37

3a

3b

45 46

48

4b

56 57

5b

67

68

7a

9b

edge for every disjoint, independent subset
= independent subset of size 2k/3

triangle = independent subset of size 3k/3

2

4

3

1

5

6

8

a

9

7

b
12

13

14

15

16

19

1a

1b

23

24

25 26

27

29

2b

34

35

36

37

3a

3b

45 46

48

4b

56 57

5b

67

68

7a

9b

edge for every disjoint, independent subset
= independent subset of size 2k/3

triangle = independent subset of size 3k/3

Time O((nk/3)ω)= O(n ωk/3)

2

4

3

1

5

6

8

a

9

7

b
12

13

14

15

16

19

1a

1b

23

24

25 26

27

29

2b

34

35

36

37

3a

3b

45 46

48

4b

56 57

5b

67

68

7a

9b

edge for every disjoint, independent subset
= independent subset of size 2k/3

triangle = independent subset of size 3k/3

Time O((nk/3)ω)= O(n ωk/3)

Space O(nk/3)

Exercise: Graph colouring

Exercise: Graph colouring

Count the
number of
2-colourings

Moebius inversion

Pedestrian view: inclusion–exclusion

TSP

Want:

s-t walks of length n that avoid no vertices

TSP

Want:

s-t walks of length n that avoid no vertices

Can count:

s-t walks of length n

TSP
Can even explicitly forbid certain vertices:

TSP
Can even explicitly forbid certain vertices:

✘ ✘ ✘ ✘ ✘ ✘

TSP
Can even explicitly forbid certain vertices:

✘ ✘ ✘ ✘ ✘ ✘

TSP
Can even explicitly forbid certain vertices:

Can count s-t walks of length n that
avoid given subset of vertices

✘ ✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

1

2

3

4

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

1

2

3

4

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

1

2

3

4

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

1

2

3

4

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

1

2

3

4

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

1

2

3

4

TSP

∑

X⊆V

(−1)|X|a(X)

TSP

∑

X⊆V

(−1)|X|a(X)

Time O*(2n). Polyspace.

Perfect matchings

2.FIN
D

IN
G

TR
IA

N
G

LES
10

sign
+

−
−

−
+

X
=

∅
{1}

{2}
{3}

{1,3}

123456789101112

F
IG

U
R

E
1.

The
inputgraph

has
three

perfectm
atchings,in

colum
ns

1,5,and
12.

The
firstrow

show
s

all12
=

3·2·2
w

ays
to

m
ap

the
leftvertices

to
the

right.Every
row

ofthe
table

show
s

the
m

appings
thatavoid

various
vertex

subsets
X

,draw
n

as◦.W
e

om
itthe

row
s

w
hose

contribution
is

zero,
like

X
=

{1,2},X
=

{2,3}
and

X
=

{1,2,3}.O
fparticular

interestis
colum

n
8,w

hich
is

subtracted
tw

ice
and

later
added

again.The
entire

calculation
is

12−
4−

2−
4

+
1

+
0

+
0−

0,w
ith

is
indeed

3.

W
e

are
tem

pted
to

do
the

follow
ing:C

onstructa
graph

T
w

here
every

vertex
correspondsto

a
subgraph

ofG
induced

by
a

vertex
subsetU

⊆
V

w
ith

13 rvertices
and

16 k
edges.Tw

o
verticesin

T
are

joined
by

an
edge

ifthere
are

16 k
edgesbetw

een
their

corresponding
vertex

subsets.Then
w

e
w

ould
like

to
argue

thatevery
trian-

gle
in

T
corresponds

to
an

induced
subgraph

ofG
w

ith
r

edges
and

k
edges.This,

of
course,doesn’t

quite
w

ork
because

(1)
the

three
vertex

subsets
m

ight
overlap

and
(2)

the
edges

do
not

necessarily
partition

into
such

six
equal-sized

fam
ilies.

O
nce

identified,these
problem

s
are

easily
adressed.

The
construction

is
as

follow
s.Partition

the
vertices

ofG
into

three
sets

V
0 ,V

1 ,
and

V
2

ofequalsize,assum
ing

3
divides

n
for

readability.
O

ur
plan

is
to

build
a

large
tripartite

graph
T

w
hose

vertices
correspond

to
induced

subgraphs
ofG

that
are

entirely
contained

in
one

the
V

i .

Perfect matchings
2.FIN

D
IN

G
TR

IA
N

G
LES

10

sign
+

−
−

−
+

X
=

∅
{1}

{2}
{3}

{1,3}

123456789101112

F
IG

U
R

E
1.

The
inputgraph

has
three

perfectm
atchings,in

colum
ns

1,5,and
12.

The
firstrow

show
s

all12
=

3·2·2
w

ays
to

m
ap

the
leftvertices

to
the

right.Every
row

ofthe
table

show
s

the
m

appings
thatavoid

various
vertex

subsets
X

,draw
n

as◦.W
e

om
itthe

row
s

w
hose

contribution
is

zero,
like

X
=

{1,2},X
=

{2,3}
and

X
=

{1,2,3}.O
fparticular

interestis
colum

n
8,w

hich
is

subtracted
tw

ice
and

later
added

again.The
entire

calculation
is

12−
4−

2−
4

+
1

+
0

+
0−

0,w
ith

is
indeed

3.

W
e

are
tem

pted
to

do
the

follow
ing:C

onstructa
graph

T
w

here
every

vertex
correspondsto

a
subgraph

ofG
induced

by
a

vertex
subsetU

⊆
V

w
ith

13 rvertices
and

16 k
edges.Tw

o
verticesin

T
are

joined
by

an
edge

ifthere
are

16 k
edgesbetw

een
their

corresponding
vertex

subsets.Then
w

e
w

ould
like

to
argue

thatevery
trian-

gle
in

T
corresponds

to
an

induced
subgraph

ofG
w

ith
r

edges
and

k
edges.This,

of
course,doesn’t

quite
w

ork
because

(1)
the

three
vertex

subsets
m

ight
overlap

and
(2)

the
edges

do
not

necessarily
partition

into
such

six
equal-sized

fam
ilies.

O
nce

identified,these
problem

s
are

easily
adressed.

The
construction

is
as

follow
s.Partition

the
vertices

ofG
into

three
sets

V
0 ,V

1 ,
and

V
2

ofequalsize,assum
ing

3
divides

n
for

readability.
O

ur
plan

is
to

build
a

large
tripartite

graph
T

w
hose

vertices
correspond

to
induced

subgraphs
ofG

that
are

entirely
contained

in
one

the
V

i .

Perfect matchings
2.FIN

D
IN

G
TR

IA
N

G
LES

10

sign
+

−
−

−
+

X
=

∅
{1}

{2}
{3}

{1,3}

123456789101112

F
IG

U
R

E
1.

The
inputgraph

has
three

perfectm
atchings,in

colum
ns

1,5,and
12.

The
firstrow

show
s

all12
=

3·2·2
w

ays
to

m
ap

the
leftvertices

to
the

right.Every
row

ofthe
table

show
s

the
m

appings
thatavoid

various
vertex

subsets
X

,draw
n

as◦.W
e

om
itthe

row
s

w
hose

contribution
is

zero,
like

X
=

{1,2},X
=

{2,3}
and

X
=

{1,2,3}.O
fparticular

interestis
colum

n
8,w

hich
is

subtracted
tw

ice
and

later
added

again.The
entire

calculation
is

12−
4−

2−
4

+
1

+
0

+
0−

0,w
ith

is
indeed

3.

W
e

are
tem

pted
to

do
the

follow
ing:C

onstructa
graph

T
w

here
every

vertex
correspondsto

a
subgraph

ofG
induced

by
a

vertex
subsetU

⊆
V

w
ith

13 rvertices
and

16 k
edges.Tw

o
verticesin

T
are

joined
by

an
edge

ifthere
are

16 k
edgesbetw

een
their

corresponding
vertex

subsets.Then
w

e
w

ould
like

to
argue

thatevery
trian-

gle
in

T
corresponds

to
an

induced
subgraph

ofG
w

ith
r

edges
and

k
edges.This,

of
course,doesn’t

quite
w

ork
because

(1)
the

three
vertex

subsets
m

ight
overlap

and
(2)

the
edges

do
not

necessarily
partition

into
such

six
equal-sized

fam
ilies.

O
nce

identified,these
problem

s
are

easily
adressed.

The
construction

is
as

follow
s.Partition

the
vertices

ofG
into

three
sets

V
0 ,V

1 ,
and

V
2

ofequalsize,assum
ing

3
divides

n
for

readability.
O

ur
plan

is
to

build
a

large
tripartite

graph
T

w
hose

vertices
correspond

to
induced

subgraphs
ofG

that
are

entirely
contained

in
one

the
V

i .

∑

X⊆Y

(−1)|X|
k∏

i=1

∑

j/∈X

Aij

Moebius inversion

Pedestrian view: inclusion–exclusion

Algebraic view: transformation on the subset lattice

• Brute force

• Greedy

• Divide and whatever

• Transformation

• Iterative improvement
(flow, simplex, local search)

• Time–space tradeoffs
(dynamic programming)

today

tomorrow

Back to transformation

g(X) =
∑

Y⊆X

f(Y)

Moebius inversion
f(X) =

∑

Y⊆X

(−1)|X\Y|g(Y)If then

V

g(X) =
∑

Y⊆X

f(Y)

Moebius inversion
f(X) =

∑

Y⊆X

(−1)|X\Y|g(Y)If then

Vg(X) = # walks
of length n from s to t
 using some of the X

X

g(X) =
∑

Y⊆X

f(Y)

Moebius inversion
f(X) =

∑

Y⊆X

(−1)|X\Y|g(Y)If then

Vg(X) = # walks
of length n from s to t
 using some of the X

X

f(X) = # walks
of length n from s to t that

using all of the X

X

g(X) =
∑

Y⊆X

f(Y)

Moebius inversion
f(X) =

∑

Y⊆X

(−1)|X\Y|g(Y)If then

Vg(X) = # walks
of length n from s to t
 using some of the X

X

f(X) = # walks
of length n from s to t that

using all of the X

X

Y

g(X) =
∑

Y⊆X

f(Y)

Moebius inversion
f(X) =

∑

Y⊆X

(−1)|X\Y|g(Y)If then

g(X) =
∑

Y⊆X

f(Y)

Moebius inversion
f(X) =

∑

Y⊆X

(−1)|X\Y|g(Y)If then

g(X) = # ways
for the boys to pick

some of the girls from X X

g(X) =
∑

Y⊆X

f(Y)

Moebius inversion
f(X) =

∑

Y⊆X

(−1)|X\Y|g(Y)If then

g(X) = # ways
for the boys to pick

some of the girls from X X

f(X) = # ways
for the girls to pick

 all of the girls from X
X

g(X) =
∑

Y⊆X

f(Y)

Moebius inversion
f(X) =

∑

Y⊆X

(−1)|X\Y|g(Y)If then

g(X) = # ways
for the boys to pick

some of the girls from X X

f(X) = # ways
for the girls to pick

 all of the girls from X
X

Y

Exercise: Graph colouring

Hint: g(X)= # ways to pick
k independent sets

(not necessarily disjoint)
using some of the vertices

in X

Exercise: Graph colouring
Count the k-
colourings in
time O*(3n)
Hint: g(X)= # ways to pick

k independent sets
(not necessarily disjoint)
using some of the vertices

in X

If you use Yates,
time becomes
O*(2n)

Perfect matchings in
general graphs

g(X) =
∑

Y⊆X

f(Y) f(X) =
∑

Y⊆X

(−1)|X\Y|g(Y)If then

f(X) = # ways to pick n/2 edges
using all vertices in X

g(X) =
∑

Y⊆X

f(Y) f(X) =
∑

Y⊆X

(−1)|X\Y|g(Y)If then

f(X) = # ways to pick n/2 edges
using all vertices in X

g(X) = # ways to pick n/2 edges
using some vertices in X

g(X) =
∑

Y⊆X

f(Y) f(X) =
∑

Y⊆X

(−1)|X\Y|g(Y)If then

f(X) = # ways to pick n/2 edges
using all vertices in X

g(X) = # ways to pick n/2 edges
using some vertices in X

Time O*(2n). Polyspace.

g(X) = # ways to pick n/2 edges
using some vertices in X

f(V) =
∑

X⊆V

(−1)|V\X|g(X)

If G[X] has k edges then g(X) = ?

f(V) =
∑

X⊆V

(−1)|V\X|g(X) =
∑

X⊆V

(−1)|V\X|e(G[X])n/2

=
m∑

k=0

∑

X⊆V

e(G[X])=k

(−1)|V\X|kn/2

=
m∑

k=0

n∑

r=0

∑

X⊆V

e(G[X])=k

|X|=r

(−1)|n−r|kn/2

=
m∑

k=0

n∑

r=0

G(n = r; m = k)(−1)|n−r|kn/2

Gist: computing

f(V) =
∑

X⊆V

(−1)|V\X|g(X)

amounts to computing the number of
induced subgraphs on r vertices with k edges

Counting triangles

V

Counting triangles

V

Counting triangles

V

r/3 vertices and k/6 edges

Counting triangles

V

r/3 vertices and k/6 edges

Counting triangles

V

r/3 vertices and k/6 edges

k/6 edges

Counting triangles

V

r/3 vertices and k/6 edges

k/6 edges

Triangles
correspond to
subgraphs with
r vertices and

k edges

Counting triangles

V

r/3 vertices and k/6 edges

k/6 edges

Triangles
correspond to
subgraphs with
r vertices and

k edges

Time O(2 ωn/3)

Counting triangles

V

r1 vertices and k1 edges

k12 edges

For each r1+r2+r3=r,
k1+k2+k3+k12+k13+k23=k

Iterative improvement

3-Satisfiability

(¬x∨y∨z)∧(x∨¬y∨z)∧(x∨y)∧(¬x∨¬y∨z)

Variables Clauses

1 1 1 1 0 0 1 0 0 1

3-Satisfiability

1 1 1 1 0 0 1 0 0 1

Variables Clauses

3-Satisfiability

1 1 1 1 0 0 1 0 0 1

Variables Clauses

1. Pick an unsatisfied clause (L1∨L2∨L3)

3-Satisfiability

1 1 1 1 0 0 1 0 0 1

Variables Clauses

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

3-Satisfiability

1 1 1 1 0 0 1 0 0 1

Variables Clauses

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

1

3-Satisfiability

1 1 1 1 0 0 1 0 0 1

Variables Clauses

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

1
1 1 0 1 0 1 0 1 1 0 OPT

3-Satisfiability

1 1 1 1 0 0 1 0 0 1

1 1 0 1 0 1 0 1 1 0 OPT

3-Satisfiability

1 1 1 1 0 0 1 0 0 1

1 1 0 1 0 1 0 1 1 0 OPT

Hamming distance to OPT

0n

1

3

2

3

3-Satisfiability

1 1 1 1 0 0 1 0 0 1

1 1 0 1 0 1 0 1 1 0 OPT

Hamming distance to OPT

0n

1

3

2

3

Pr(from i to 0) = 2-i

3-Satisfiability

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

1 1 1 1 0 0 1 0 0 1

Variables Clauses

1
1 1 0 1 0 1 0 1 1 0 OPT

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

Repeat 3n times

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

Repeat 3n times

Pr(from i to 0) = 2-i

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

Repeat 3n times
Pick a random assignment

Repeat a bunch of times

Pr(from i to 0) = 2-i

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

Repeat 3n times
Pick a random assignment

Repeat a bunch of times

Pr(from i to 0) = 2-i

Pr(random assignment has distance i) =
(

n

i

)
2−n

3. Flip the corresponding variable

1. Pick an unsatisfied clause (L1∨L2∨L3)

2. Pick one of its 3 literals

Repeat 3n times
Pick a random assignment

Repeat a bunch of times

Pr(from i to 0) = 2-i

Pr(random assignment has distance i) =
(

n

i

)
2−n

n∑

i=0

(
n

i

)
2−n2−i = · · · = (

3

4
)nPr(success)=

Exercise: Graph colouring

See the Perfect Talk

Time–Space Tradeoffs

Time–Space Tradeoffs
Meet in the middleDynamic programming

over the subsets over a tree-
decomposition

Meet in the middle

TSP, degree 4

n-1

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

T m OPT(T,m,t)
...

{v4,v16,….} v63 43673

...

1. Compute all
OPT(T,m,t), store them

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

T m OPT(T,m,t)
...

{v4,v16,….} v63 43673

...

1. Compute all
OPT(T,m,t), store them

2. Compute all
OPT(S,m,s), look up

corresponding
OPT(V-S,m,t)

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

T m OPT(T,m,t)
...

{v4,v16,….} v63 43673

...

1. Compute all
OPT(T,m,t), store them

2. Compute all
OPT(S,m,s), look up

corresponding
OPT(V-S,m,t)

Time O(3n/2)

Space O(3n/2)

Exercise: Graph colouring

See the Perfect Talk

Dynamic programming
over the subsets

TSP

n-1

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

Exponential divide and conquer

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

Exponential divide and conquer

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

Exponential divide and conquer

X u v OPT(X,u,v)
...

{v4,v16,….} v63 v23 43673

...

Compute all OPT(X,u,v),
store them

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

X u v OPT(X,u,v)
...

{v4,v16,….} v63 v23 43673

...

Compute all OPT(X,u,v),
store them

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

X u v OPT(X,u,v)
...

{v4,v16,….} v63 v23 43673

...

Compute all OPT(X,u,v),
store them2n entries.

Entry for X
takes 2|X| time.

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

X u v OPT(X,u,v)
...

{v4,v16,….} v63 v23 43673

...

Compute all OPT(X,u,v),
store them2n entries.

Entry for X
takes 2|X| time.

Time O*(3n)

Exercise: Graph colouring

Exercise: Graph colouring

Count the k-
colourings in
time O*(3n)

TSP

n-1

n/2 n/2

OPT(U, s, t) = min
m,S,T

OPT(S, s,m) + OPT(T,m, t)

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)

TSP

n-1

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)

TSP

n-1

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)

X u OPT(X,u)
...

{v4,v16,….} v63 43673

...

TSP

n-1

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)

X u OPT(X,u)
...

{v4,v16,….} v63 43673

...

2n entries.
Entry for X

takes n time.

TSP

n-1

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v)

X u OPT(X,u)
...

{v4,v16,….} v63 43673

...

2n entries.
Entry for X

takes n time.

Time O*(2n)

Part of popular geek culture

[xkcd #399]

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

TSP/HC 3-Sat Independent set
#perfect
matchings colouring

Brute force n! 2n 2n 2m, n! kn

Greedy n!
Decrease and

conquer n! 1.83n 1.39n 1.62n+m

Divide and
conquer

4n 9n

Triangle
counting

22.38k/3 1.73n

Moebius
transformation

2n 1.41n, 1.73n 3n, 2n

Local search (4/3)n

Meet in the
middle

3n/2

Dynamic
programming

2n 3n

