Introduction to Exact Algorithmics

Thore Husfeldt
IT University of Copenhagen
Lund University

Algorithm E^{\prime}
for problem T for problem T

Algorithm E^{\prime}
for problem T for problem T

Algorithm E^{\prime}
for problem T for problem T

Class I

Algorithm D for problem S

Algorithm B for problem Q

Class II

Class III

Algorithm H for problem W

Class I
Class II
Class III

Algorithm A for problem P

Algorithm H
for problem W

Perfect talk

Brute force

Algorithm A
for problem P

Transforms

Algorithm E for problem P

Bad news

- Not comprehensive
- Not optimal
- Not standard

Even worse news

- Exercises during the talk

Brute Force

JUST DO IT.

Travelling Salesman

$$
\begin{gathered}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
w: \mathrm{E} \rightarrow \mathrm{~N} \\
\min _{\pi} \sum_{i=1}^{n-1} w(\pi(i), \pi(i+1))
\end{gathered}
$$

Travelling Salesman

$$
\begin{gathered}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
w: \mathrm{E} \rightarrow \mathrm{~N} \\
\min _{\pi} \sum_{i=1}^{n-1} w(\pi(i), \pi(i+1))
\end{gathered}
$$

Time O(n!). Polynomial space.

$n!$ permutations of $1,2, \ldots, n$

Time $O(n!)$. Polynomial space.

Time O(n!). Polynomial space.
$n!$ permutations of $I, 2, \ldots, n$

Time $O((n-1)!)$
Time $O(n!)$. Polynomial space.
$n!$ permutations of $I, 2, \ldots, n$
Don't need them all

Time O($n-I)!$
Time $O(n!n)$ (n!). Polynomial space.
$n!$ permutations of $1,2, \ldots, n$
Don't need them all
Polynomial computation for each permutation

Time $0 *(n!)$ Polynomial space.
$n!$ permutations of $I, 2, \ldots, n$
Don't need them all
Polynomial computation for each permutation

Construct all permutations with constant delay?

Independent set

Time $O^{*}\left(2^{n}\right)$. Polyspace.

3-Satisfiability

$$
(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee z) \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)
$$

n variables
m clauses

3-Satisfiability

$$
(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee z) \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)
$$

n variables
m clauses

Time $0 *\left(2^{n}\right)$. Polyspace.

Perfect matchings

Perfect matchings

Perfect matchings

Perfect matchings

Perfect matchings

Count them (finding one is "easy")

Perfect matchings

Count them (finding one is "easy")

Time $O^{*}\left(2^{m}\right)$. Polyspace.

Perfect matchings

Count them (finding one is "easy")

Time $O^{*}\left(2^{m}\right)$. Polyspace.
Time $O^{*}(n!)$. Polyspace.

Exercise: Graph colouring

A five-colouring
No edge connects vertices of the same colour

Exercise: Graph colouring

Input: Graph $G=(V, E)$, integer k
Ouput: Can G be coloured with k colours?

Solve using brute force

Exercise: Graph colouring

Input: Graph $G=(V, E)$, integer k
Ouput: Can G be coloured with k colours?

Solve using brute force

Time $O^{*}\left(n^{k}\right)$

Greedy

Exercise: Graph colouring

Does this always work?

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Exercise: Graph colouring

Is every k-colourable graph greedily kcolourable for some ordering)?

Conclude: Graph colouring in O (n!)

Recursion ("Reduce to self")

Recursion ("Reduce to self")

Recursion ("Reduce to self")

Decrease and conquer
Divide and conquer

Recursion ("Reduce to self")

Decrease and conquer

Insertion sort
Mergesort

Recursion

("Reduce to self")

Decrease and conquer

Insertion sort
$a^{n}=a \cdot a^{n-1}$

Divide and conquer

Mergesort

$$
a^{n}=a^{n / 2} \cdot a^{n / 2}
$$

Decrease and conquer

Independent set

Degree ≤ 2 : easy

Independent set

Degree ≤ 2 : easy

Instance of size n

Independent set

Instance of size n

Two new instances of size $n-1$

Independent set

Instance of size n

Independent set

Instance of size n

Independent set

Instance of size n

New instance of size $n-4$

New instance of size $n-1$

Independent set

$$
T(n)=T(n-1)+T(n-4)
$$

Instance of size n

New instance of size $n-4$

New instance of size $n-1$

Independent set

$$
T(n)=T(n-1)+T(n-4)
$$

Time $O^{*}\left(1.39^{n}\right)$. Polyspace.

Instance of size n

New instance of size $n-4$

New instance of size $n-1$

3-Satisfiability

$(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee z) \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)$

3-Satisfiability

$$
(\neg x \vee y \vee z) \wedge((x \vee \neg y \vee z) \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)
$$

3-Satisfiability

$$
\begin{aligned}
& (\neg x \vee y \vee z) \wedge((x \vee \neg y \vee z) \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z) \\
& (\neg x \vee y \vee z) \wedge \top^{\prime} F \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z) \\
& (\neg x \vee y \vee z) \wedge(x \vee T \cdot F \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z) \\
& (\neg x \vee y \vee z) \wedge(x \vee \neg y \top \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)
\end{aligned}
$$

3-Satisfiability

$$
T(n)=T(n-1)+T(n-2)+T(n-3)
$$

$(\neg x \vee y \vee z) \wedge((x \vee \neg y \vee z) \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)$
$(\neg x \vee y \vee z) \wedge T / F, F \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)$
$(\neg x \vee y \vee z) \wedge(x \vee T)^{\prime} F \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)$
$(\neg x \vee y \vee z) \wedge(x \vee \neg y \backsim \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)$

3-Satisfiability

$$
T(n)=T(n-1)+T(n-2)+T(n-3)
$$

Time $0^{*}\left(1.84^{n}\right)$. Polyspace.

$$
\begin{aligned}
& (\neg x \vee y \vee z) \wedge(x \vee \neg y \vee z) \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z) \\
& (\neg x \vee y \vee z) \wedge T \vee F \cdot F \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z) \\
& (\neg x \vee y \vee z) \wedge(x \vee T \cdot F \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z) \\
& (\neg x \vee y \vee z) \wedge(x \vee \neg y \subseteq \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)
\end{aligned}
$$

TSP

TSP

TSP

TSP

TSP

TSP

TSP

$T(n)=n \cdot T(n-1)$

Exercise: Graph colouring

First approach: split on vertices

Exercise: Graph colouring

First approach: split on vertices

Exercise: Graph colouring

First approach: split on vertices

Exercise: Graph colouring

First approach: split on vertices

Exercise: Graph colouring

Better: split on "nonedges"

Exercise: Graph colouring

Better: split on "nonedges"

Conclude: Graph colouring in 0(1.619n+m')

Divide and conquer

TSP

TSP

TSP

TSP

$$
\operatorname{OPT}(\mathrm{T}, v)=\min _{\mathrm{u} \in \mathrm{~T} \backslash\{v\}} \operatorname{OPT}(\mathrm{T} \backslash\{v\}, u)+w(u, v)
$$

$\operatorname{OPT}(\mathrm{U}, \mathrm{s}, \mathrm{t})=\min _{\mathrm{m}, \mathrm{S}, \mathrm{T}} \operatorname{OPT}(\mathrm{S}, \mathrm{s}, \mathrm{m})+\operatorname{OPT}(\mathrm{T}, \mathrm{m}, \mathrm{t})$

TSP

$$
T(n)=\binom{n}{n / 2} \cdot 2 \cdot T(n / 2)
$$

TSP

$$
T(n)=\binom{n}{n / 2} \cdot 2 \cdot T(n / 2)
$$

$\operatorname{OPT}(\mathrm{U}, \mathrm{s}, \mathrm{t})=\min _{\mathrm{m}, \mathrm{S}, \mathrm{T}} \operatorname{OPT}(\mathrm{S}, \mathrm{s}, \mathrm{m})+\operatorname{OPT}(\mathrm{T}, \mathrm{m}, \mathrm{t})$

TSP

$$
T(n)=\binom{n}{n / 2} \cdot 2 \cdot T(n / 2)
$$

$T(n) \leq 2^{n} \cdot T(n / 2) \leq 2^{n} 2^{n / 2} \cdots 2^{0} \leq 2^{2 n}=4^{n}$
$\operatorname{OPT}(\mathrm{U}, \mathrm{s}, \mathrm{t})=\min _{\mathrm{m}, \mathrm{S}, \mathrm{T}} \operatorname{OPT}(\mathrm{S}, \mathrm{s}, \mathrm{m})+\operatorname{OPT}(\mathrm{T}, \mathrm{m}, \mathrm{t})$

Exercise: Graph colouring

k-colouring = partition into k independent sets

k-colouring = partition into k independent sets

Conclude: Graph colouring in 0*(9n)

Transformation ("Reduce to other")
$\log a^{n}=n \log a$ $a^{(0110101)_{2}}=\ldots$

Transformation

("Reduce to other")

$$
\begin{aligned}
& \log a^{n}=n \log a \\
& a^{(0110101)_{2}}=\ldots
\end{aligned}
$$

Counting triangles
Moebius transform

To Counting Triangles

Counting triangles

Easily in $\mathrm{O}\left(|\mathrm{V}|^{3}\right)$

Surprise: can do better! Current record: $\mathrm{O}\left(|\mathrm{V}|^{2.376}\right)$

trace $\left(A^{3}\right)=6$ times \# triangles

A
$\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
trace $\left(A^{3}\right)=6$ times $\#$ triangles

A
A^{2}

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

trace $\left(A^{3}\right)=6$ times $\#$ triangles

$$
\begin{array}{cc}
& A \\
{\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 3 & 3 & 1 \\
3 & 2 & 3 & 1 \\
4 & 4 & 2 & 3 \\
1 & 1 & 2 & 0
\end{array}\right]}
\end{array}
$$

trace $\left(A^{3}\right)=6$ times \# triangles

$$
\begin{gathered}
A \\
{\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
2 & 3 & 3 & 1 \\
3 & 2 & 3 & 1 \\
4 & 4 & 2 & 3 \\
1 & 1 & 2 & 0
\end{array}\right]}
\end{gathered}
$$

$\operatorname{trace}\left(A^{3}\right)=6$ times \# triangles
(2)

Time O(d $\left.{ }^{3}\right)$

$$
\begin{gathered}
A \\
{\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
2 & 3 & 3 & 1 \\
3 & 2 & 3 & 1 \\
4 & 4 & 2 & 3 \\
1 & 1 & 2 & 0
\end{array}\right]}
\end{gathered}
$$

trace $\left(A^{3}\right)=6$ times \# triangles

Time $\mathrm{O}\left(\mathrm{d}^{\omega}\right)$

$$
\begin{aligned}
& A \quad A^{2} \quad A^{3} \\
& {\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 3 & 3 & 1 \\
3 & 2 & 3 & 1 \\
4 & 4 & 2 & 3 \\
1 & 1 & 2 & 0
\end{array}\right]}
\end{aligned}
$$

trace $\left(A^{3}\right)=6$ times \# triangles

independent set of size $k=6$?

(1) (3) (2) (2) (1) (3) (1)
(10) (1) (3) (5) (1) (2) (1)
(4) (5) (2) (3) (1) (3)
(5) (3) (2) (3) (7) (ㄱ)
(1) (2) (2) (3) (1) (3)
vertex for every independent subset of size k/3

$$
\binom{n}{k / 3} \sim n^{k / 3}
$$

edge for every disjoint, independent subset = independent subset of size $2 \mathrm{k} / 3$

edge for every disjoint, independent subset = independent subset of size $2 \mathrm{k} / 3$
triangle $=$ independent subset of size $3 k / 3$

Time $O\left(\left(n^{k / 3}\right) \omega\right)=O\left(n^{\omega k / 3}\right)$

edge for every disjoint, independent subset = independent subset of size $2 \mathrm{k} / 3$
triangle $=$ independent subset of size $3 k / 3$

Time $O\left(\left(n^{k / 3}\right) \omega\right)=O\left(n^{\omega k / 3}\right)$

Space $O\left(n^{k / 3}\right)$

edge for every disjoint, independent subset = independent subset of size $2 \mathrm{k} / 3$
triangle $=$ independent subset of size $3 k / 3$

Exercise: Graph colouring

Exercise: Graph colouring

Moebius inversion

Pedestrian view: inclusion-exclusion

TSP

Want:

$s-t$ walks of length n that avoid no vertices

TSP

Want:

$s-t$ walks of length n that avoid no vertices

Can count:

TSP

Can even explicitly forbid certain vertices:

TSP

Can even explicitly forbid certain vertices:

TSP

Can even explicitly forbid certain vertices:

TSP

Can even explicitly forbid certain vertices:

Can count $s-t$ walks of length n that avoid given subset of vertices

2

TSP

$\sum_{X \subseteq V}(-1)^{|X|} a(X)$

TSP

$$
\sum_{X \subseteq V}(-1)^{|X|} a(X)
$$

Time $0^{*}\left(2^{n}\right)$. Polyspace.

Perfect matchings

Perfect matchings

\mathcal{M} N X W M M M IN M IN IM

* W

MiN \equiv ix is in
N N W M玉
w
E.

Perfect matchings
 $\sum_{X=1}(-1)^{\mid x} \prod_{i=1}^{k} \sum_{i \in X} A_{i s}$

$\overline{5}=\ldots \ldots \ldots \ldots \ldots+\ldots \ldots 1$

K W W iNiN 三
W N W M
玉
w N10

Moebius inversion

Pedestrian view: inclusion-exclusion
Algebraic view: transformation on the subset lattice

Back to transformation

Moebius inversion

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

Moebius inversion

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

$$
\mathrm{g}(\mathrm{X})=\# \text { walks }
$$

of length n from s to t using some of the X

Moebius inversion

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

$$
g(X)=\# \text { walks }
$$

of length n from s to t using some of the X

$$
f(X)=\# \text { walks }
$$

of length n from s to t that using all of the X

Moebius inversion

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

$$
g(X)=\# \text { walks }
$$

of length n from s to t using some of the X

$$
f(X)=\# \text { walks }
$$

of length n from s to t that using all of the X

Moebius inversion

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

Moebius inversion

$$
\begin{aligned}
& \text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y) \\
& g(X)=\text { \# ways } \\
& \text { for the boys to pick } \\
& \text { some of the girls from } X
\end{aligned}
$$

Moebius inversion

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

$$
g(X)=\# \text { ways }
$$

for the boys to pick some of the girls from X

$$
f(X)=\# \text { ways }
$$

for the girls to pick
all of the girls from X

Moebius inversion

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

$$
g(X)=\# \text { ways }
$$

for the boys to pick some of the girls from X

$$
f(X)=\# \text { ways }
$$

for the girls to pick all of the girls from X

Exercise: Graph colouring

Hint: $g(X)=$ \# ways to pick kindependent sets (not necessarily disjoint) using some of the vertices in X

Count the kcolourings in time 0 *(3n)

Hint: $g(X)=$ \# ways to pick k independent sets (not necessarily disjoint) using some of the vertices in X

If you use Yates, time becomes $0^{*}\left(2^{n}\right)$

Perfect matchings in general graphs

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

$f(X)=\#$ ways to pick $n / 2$ edges using all vertices in X

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

$f(X)=\#$ ways to pick $n / 2$ edges using all vertices in X
$g(X)=\#$ ways to pick $n / 2$ edges using some vertices in X

$$
\text { If } g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { then } f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} g(Y)
$$

Time $O^{*}\left(2^{n}\right)$. Polyspace.

$f(X)=\#$ ways to pick $n / 2$ edges using all vertices in X
$g(X)=$ \# ways to pick $n / 2$ edges using some vertices in X

$$
f(V)=\sum_{X \subseteq V}(-1)^{|V \backslash X|} g(X)
$$

If $G[X]$ has k edges then $g(X)=$?

$g(X)=$ \# ways to pick $n / 2$ edges using some vertices in X

$$
\begin{aligned}
& f(V)= \sum_{X \subseteq V}(-1)^{|V \backslash X|} g(X)=\sum_{X \subseteq V}(-1)^{|V \backslash X|} e(G[X])^{n / 2} \\
&= \sum_{k=0}^{m} \sum_{X \subseteq V}(-1)^{|V \backslash X|} k^{n / 2} \\
& e(G[X])=k \\
&= \sum_{k=0}^{m} \sum_{r=0}^{n} \sum_{X \subseteq V}(-1)^{|n-r|} k^{n / 2} \\
& e(G[X])=k \\
&|X|=r \\
&= \sum_{k=0}^{m} \sum_{r=0}^{n} G(n=r ; m=k)(-1)^{|n-r|} k^{n / 2}
\end{aligned}
$$

Gist: computing

$$
f(V)=\sum_{X \subseteq V}(-1)^{|V \backslash X|} g(X)
$$

amounts to computing the number of induced subgraphs on r vertices with k edges

Counting triangles

Triangles correspond to subgraphs with r vertices and k edges

Counting triangles

Triangles

 correspond to subgraphs with r vertices and k edgesTime $O(2 \omega n / 3)$

Counting triangles

For each $r_{1}+r_{2}+r_{3}=r$,

$$
k_{1}+k_{2}+k_{3}+k_{12}+k_{13}+k_{23}=k
$$

r_{1} vertices and k_{1} edges

Iterative improvement

3-Satisfiability

$$
(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee z) \wedge(x \vee y) \wedge(\neg x \vee \neg y \vee z)
$$

Variables
Clauses

1	1	1	1	0	0	1	0	0	1

\square

3-Satisfiability

Variables
Clauses

1	1	1	1	0	0	1	0	0

3-Satisfiability

I. Pick an unsatisfied clause ($\mathrm{L}_{1} \vee \mathrm{~L}_{2} \vee \mathrm{~L}_{3}$)

Variables
Clauses

3-Satisfiability

I. Pick an unsatisfied clause $\left(\mathrm{L}_{1} \vee \mathrm{~L}_{2} \vee \mathrm{~L}_{3}\right)$
2. Pick one of its 3 literals

Variables
Clauses

3-Satisfiability

I. Pick an unsatisfied clause ($\mathrm{L}_{1} \vee \mathrm{~L}_{2} \vee \mathrm{~L}_{3}$)
2. Pick one of its 3 literals
3. Flip the corresponding variable

Variables
Clauses

3-Satisfiability

I. Pick an unsatisfied clause $\left(\mathrm{L}_{1} \vee \mathrm{~L}_{2} \vee \mathrm{~L}_{3}\right)$
2. Pick one of its 3 literals
3. Flip the corresponding variable

Variables
Clauses

3-Satisfiability

3-Satisfiability

3-Satisfiability

Hamming distance to OPT
$\operatorname{Pr}($ from i to 0$)=2^{-i}$

3-Satisfiability

I. Pick an unsatisfied clause $\left(\mathrm{L}_{1} \vee \mathrm{~L}_{2} \vee \mathrm{~L}_{3}\right)$
2. Pick one of its 3 literals
3. Flip the corresponding variable

Variables
Clauses

I. Pick an unsatisfied clause $\left(\mathrm{L}_{1} \vee \mathrm{~L}_{2} \vee \mathrm{~L}_{3}\right)$
2. Pick one of its 3 literals
3. Flip the corresponding variable

Repeat $3 n$ times

I. Pick an unsatisfied clause ($L_{1} \vee L_{2} \vee L_{3}$)
2. Pick one of its 3 literals
3. Flip the corresponding variable

Repeat $3 n$ times

I. Pick an unsatisfied clause ($L_{1} \vee L_{2} \vee L_{3}$)
2. Pick one of its 3 literals
3. Flip the corresponding variable

$$
\operatorname{Pr}(\text { from } i \text { to } 0)=2^{-i}
$$

Repeat a bunch of times
Pick a random assignment Repeat $3 n$ times
I. Pick an unsatisfied clause ($\mathrm{L}_{1} \vee \mathrm{~L}_{2} \vee \mathrm{~L}_{3}$)
2. Pick one of its 3 literals
3. Flip the corresponding variable

$$
\operatorname{Pr}(\text { from } i \text { to } 0)=2^{-i}
$$

Repeat a bunch of times
Pick a random assignment Repeat 3n times
I. Pick an unsatisfied clause ($\mathrm{L}_{1} \vee \mathrm{~L}_{2} \vee \mathrm{~L}_{3}$)
2. Pick one of its 3 literals
3. Flip the corresponding variable

$$
\operatorname{Pr}(\text { from } i \text { to } 0)=2^{-i}
$$

$\operatorname{Pr}($ random assignment has distance $i)=\binom{n}{i} 2^{-n}$

Repeat a bunch of times
Pick a random assignment Repeat 3n times
I. Pick an unsatisfied clause ($L_{1} \vee L_{2} \vee L_{3}$)
2. Pick one of its 3 literals
3. Flip the corresponding variable

$$
\operatorname{Pr}(\text { from } i \text { to } 0)=2^{-i}
$$

$\operatorname{Pr}($ random assignment has distance $i)=\binom{n}{i} 2^{-n}$

$$
\operatorname{Pr}(\text { success })=\sum_{i=0}^{n}\binom{n}{i} 2^{-n} 2^{-i}=\cdots=\left(\frac{3}{4}\right)^{n}
$$

Time-Space Tradeoffs

Time-Space Tradeoffs

Dynamic programming
Meet in the middle
over the subsets
over a tree-
decomposition

Meet in the middle

TSP, degree 4

$$
\operatorname{OPT}(\mathrm{T}, v)=\min _{u \in \mathrm{~T} \backslash\{v\}} \operatorname{OPT}(\mathrm{T} \backslash\{v\}, u)+w(u, v)
$$

$\operatorname{OPT}(\mathrm{U}, \mathrm{s}, \mathrm{t})=\min _{\mathrm{m}, \mathrm{S}, \mathrm{T}} \operatorname{OPT}(\mathrm{S}, \mathrm{s}, \mathrm{m})+\operatorname{OPT}(\mathrm{T}, \mathrm{m}, \mathrm{t})$

I. Compute all
 OPT(T,m,t), store them

$\operatorname{OPT}(U, s, t)=\min _{m, S, T} \operatorname{OPT}(S, s, m)+\operatorname{OPT}(T, m, t)$
2. Compute all OPT(S,m,s), look up corresponding
OPT(V-S,m,t)

$\operatorname{OPT}(U, s, t)=\min _{m, S, T} \operatorname{OPT}(S, s, m)+\operatorname{OPT}(T, m, t)$
2. Compute all

OPT(S,m,s), look up corresponding
OPT(V-S,m,t)

Time $O\left(3^{n / 2}\right)$

Space $O\left(3^{n / 2}\right)$

$$
\operatorname{OPT}(\mathrm{U}, \mathrm{~s}, \mathrm{t})=\min _{\mathrm{m}, \mathrm{~S}, \mathrm{~T}} \operatorname{OPT}(\mathrm{~S}, \mathrm{~s}, \mathrm{~m})+\operatorname{OPT}(\mathrm{T}, \mathrm{~m}, \mathrm{t})
$$

Dynamic programming over the subsets

TSP

$\operatorname{OPT}(T, v)=\min _{u \in T \backslash\{v\}} \operatorname{OPT}(T \backslash\{v\}, u)+w(u, v)$

$\operatorname{OPT}(\mathrm{U}, \mathrm{s}, \mathrm{t})=\min _{\mathrm{m}, \mathrm{S}, \mathrm{T}} \operatorname{OPT}(\mathrm{S}, \mathrm{s}, \mathrm{m})+\operatorname{OPT}(\mathrm{T}, \mathrm{m}, \mathrm{t})$

Exponential divide and conquer

$\operatorname{OPT}(U, s, t)=\min _{m, S, T} \operatorname{OPT}(S, s, m)+\operatorname{OPT}(T, m, t)$

Exponential divide and conquer

$\operatorname{OPT}(U, s, t)=\min _{m, S, T} \operatorname{OPT}(S, s, m)+\operatorname{OPT}(T, m, t)$

Compute all $\operatorname{OPT}(X, u, v)$, store them

$\operatorname{OPT}(U, s, t)=\min _{m, S, T} \operatorname{OPT}(S, s, m)+\operatorname{OPT}(T, m, t)$

Compute all $\operatorname{OPT}(X, u, v)$, store them

$\operatorname{OPT}(U, s, t)=\min _{m, S, T} \operatorname{OPT}(S, s, m)+\operatorname{OPT}(T, m, t)$
2^{n} entries.
Entry for X takes ${ }^{|X|}$ time.

Compute all OPT(X,u,v), store them

$\operatorname{OPT}(U, s, t)=\min _{m, S, T} \operatorname{OPT}(S, s, m)+\operatorname{OPT}(T, m, t)$
2^{n} entries.
Entry for X takes $2^{|X|}$ time.

Time $O^{*}(3 n)$

$\operatorname{OPT}(U, s, t)=\min _{m, S, T} \operatorname{OPT}(S, s, m)+\operatorname{OPT}(T, m, t)$

Exercise: Graph colouring

Exercise: Graph colouring

Count the kcolourings in time 0*(3n)

TSP

$\operatorname{OPT}(T, v)=\min _{u \in T \backslash\{v\}} \operatorname{OPT}(T \backslash\{v\}, u)+w(u, v)$

$\operatorname{OPT}(\mathrm{U}, \mathrm{s}, \mathrm{t})=\min _{\mathrm{m}, \mathrm{S}, \mathrm{T}} \operatorname{OPT}(\mathrm{S}, \mathrm{s}, \mathrm{m})+\operatorname{OPT}(\mathrm{T}, \mathrm{m}, \mathrm{t})$

TSP

$\operatorname{OPT}(T, v)=\min _{u \in \mathrm{~T} \backslash\{v\}} \operatorname{OPT}(\mathrm{T} \backslash\{v\}, u)+w(u, v)$

TSP

$\operatorname{OPT}(T, v)=\min _{u \in \mathrm{~T} \backslash v\}\}} \operatorname{OPT}(\mathrm{T} \backslash\{v\}, u)+w(u, v)$

TSP

$$
\operatorname{OPT}(\mathrm{T}, v)=\min _{u \in \mathrm{~T} \backslash v\}\}} \operatorname{OPT}(\mathrm{T} \backslash\{v\}, u)+w(u, v)
$$

2^{n} entries.
Entry for X
takes n time.

TSP

$$
\operatorname{OPT}(T, v)=\min _{u \in T \backslash\{v\}} \operatorname{OPT}(T \backslash\{v\}, u)+w(u, v)
$$

2^{n} entries.
Entry for X
takes n time.

Time $O^{*}\left(2^{n}\right)$

Part of popular geek culture

SELUNG ON EBAY: O(1)

STILL WORKING

 ON YOUR ROUTE?

[xkcd \#399]

	TSP/HC	3 -Sat	Independent set	\#perfect matchings	colouring
Brute force	$\mathrm{n}!$	2^{n}	2^{n}	$2^{m}, \mathrm{n}!$	k^{n}

	TSP/HC	3 -Sat	Independent set	\#perfect matchings	colouring
Brute force	$\mathrm{n}!$	2^{n}	2^{n}	$2^{m}, n!$	k^{n}
Greedy					$\mathrm{n}!$

	TSP/HC	3 -Sat	Independent set	\#perfect matchings	colouring
Brute force	$n!$	2^{n}	2^{n}	$2^{m}, n!$	k^{n}
Greedy					$n!$
Decrease and conquer	$n!$	1.83^{n}	$1.39 n$		1.62^{n+m}

	TSP/HC	3 -Sat	Independent set	\#perfect matchings	colouring
Brute force	$\mathrm{n}!$	2^{n}	2^{n}	$2^{\mathrm{m}}, \mathrm{n}!$	k^{n}
Greedy					$n!$
Decrease and conquer	$\mathrm{n}!$	1.83^{n}	1.39 n		1.62^{n+m}
Divide and conquer	4^{n}				9^{n}

	TSP/HC	3 -Sat	Independent set	\#perfect matchings	colouring
Brute force	$\mathrm{n}!$	2^{n}	2^{n}	$2^{\mathrm{m}}, \mathrm{n}!$	k^{n}
Greedy					$\mathrm{n}!$
Decrease and conquer	$\mathrm{n}!$	1.83^{n}	$1.39 n$		1.62^{n+m}
Divide and conquer	4 n				$9 n$
Triangle counting			$22.38 \mathrm{k} / 3$		1.73^{n}

	TSP/HC	3-Sat	Independent set	\#perfect matchings	colouring
Brute force	$\mathrm{n}!$	2^{n}	2^{n}	$2^{\mathrm{m}}, \mathrm{n}!$	k^{n}
Greedy					$n!$
Decrease and conquer	$\mathrm{n}!$	1.83^{n}	1.39 n		1.62^{n+m}
Divide and conquer	4^{n}				9^{n}
Triangle counting			$22.38 \mathrm{k} / 3$		1.73^{n}
Moebius transformation	2^{n}			$1.41^{n}, 1.73^{n}$	$3^{n}, 2^{n}$

	TSP/HC	3-Sat	Independent set	\#perfect matchings	colouring
Brute force	$n!$	$2^{\text {n }}$	2^{n}	$2^{m}, n!$	k^{n}
Greedy					n !
Decrease and conquer	n !	$1.83{ }^{\text {n }}$	1.39n		1.62^{n+m}
Divide and conquer	4^{n}				9 n
Triangle counting			22.38k/3		$1.73 n$
Moebius transformation	2^{n}			$1.41 \mathrm{n}, 1.73{ }^{n}$	$3^{n}, 2^{\text {n }}$
Local search		$(4 / 3)^{n}$			

	TSP/HC	3-Sat	Independent set	\#perfect matchings	colouring
Brute force	n !	$2^{\text {n }}$	$2^{\text {n }}$	$2^{m}, n!$	k^{n}
Greedy					$n!$
Decrease and conquer	n!	1.83 n	1.39n		1.62^{n+m}
Divide and conquer	4 n				9 n
Triangle counting			$22.38 \mathrm{k} / 3$		$1.73{ }^{\text {n }}$
Moebius transformation	$2^{\text {n }}$			$1.41^{n}, 1.73 n$	$3^{n}, 2^{n}$
Local search		$(4 / 3)^{n}$			
Meet in the middle	3n/2				

	TSP/HC	3-Sat	Independent set	\#perfect matchings	colouring
Brute force	n !	$2^{\text {n }}$	2^{n}	$2^{m}, n!$	k^{n}
Greedy					$n!$
Decrease and conquer	n !	$1.83{ }^{\text {n }}$	1.39n		1.62^{n+m}
Divide and conquer	4 n				9 n
Triangle counting			$22.38 \mathrm{k} / 3$		1.73 n
Moebius transformation	$2^{\text {n }}$			$1.41^{n}, 1.73^{n}$	$3^{n}, 2^{n}$
Local search		$(4 / 3)^{n}$			
Meet in the middle	3n/2				
Dynamic programming	$2^{\text {n }}$				$3{ }^{\text {n }}$

